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ABSTRACT

To first order in the deviation from scale invariance the inflationary potential and its first
two derivatives can be expressed in terms of the spectral indices of the scalar and tensor
perturbations, n and nT , and their contributions to the variance of the quadrupole CBR
temperature anisotropy, S and T . In addition, there is a “consistency relation” between these
quantities: nT = −1

7
T
S
. We discuss the overall strategy of perturbative reconstruction and

derive the second-order expressions for the inflationary potential and its first two derivatives
and the first-order expression for its third derivative, all in terms of n, nT , S, T , and dn/d ln k.
We also obtain the second-order consistency relation, nT = −1

7
T
S
[1 + 0.11T

S
+ 0.15(n − 1)].

As an example we consider the exponential potential, the only known case where exact
analytic solutions for the perturbation spectra exist. We reconstruct the potential via Taylor
expansion (with coefficients calculated at both first and second order), and introduce the
Padé approximant as a greatly improved alternative.

PACS number(s): 98.80.Cq, 98.70.Vc



1 Introduction

In inflationary models quantum fluctuations excited on very small length scales (∼ H−1 ∼
10−23cm) are stretched to astrophysical scales (∼ 1025cm) by the tremendous growth of the
scale factor during inflation (H is the value of Hubble parameter during inflation) [1]. This
results in almost scale-invariant spectra of scalar (density) [2] and tensor (gravitational-
wave) [3] metric perturbations. Together with the prediction of a spatially-flat Universe
they provide the means for testing the inflationary paradigm. The tensor fluctuations lead to
cosmic background radiation (CBR) anisotropy and a stochastic background of gravitational
waves with wavelengths from about 1 km to over 104 Mpc. The scalar fluctuations also lead
to CBR anisotropy and seed the formation of structure in the Universe.

The amplitudes and spectral indices of the metric fluctuations can be expressed in terms
of the inflationary potential and its derivatives, evaluated at the value of the scalar field when
astrophysically interesting scales crossed outside the horizon during inflation (from galactic
scales to the presently observable Universe, corresponding to the eight e-foldings about 50
e-folds or so before the end of inflation). Techniques have been developed for relating the
scalar and tensor spectra to the potential and its derivatives in an expansion whose small
parameter is the deviation from scale invariance [4, 5]. In particular, the spectral indices
and the power spectra of the fluctuations today can be written as [5]1

n = 1 − x2
50

8π
+

mPlx
′

50

4π
, nT = −x2

50

8π
, (1)

P (k) = Akn|T (k)|2, PT (k) = AT knT−3|TT (k)|2
(

3j1(kτ0)

kτ0

)2

, (2)

A =
1024π3k1−n

50

75H4
0

[

1 +
7

6
nT +

(

−7

3
+ ln 2 + γ

)

(n − 1)
]

V50

m4
Plx

2
50

, (3)

AT =
8k−nT

50

3π

[

1 +
(

−7

6
+ ln 2 + γ

)

nT

]

V50

m4
Pl

. (4)

Here k is the comoving wavenumber, x = mPlV
′/V measures the steepness of the potential,

prime denotes derivative with respect to the scalar field that drives inflation, subscript 50
indicates that the quantity is to be evaluated 50 e-folds before the end of inflation,2 mPl =

1Several minor errors in Ref. [5] have been corrected here: the factor of H3+n

0 in Eq. (A5) should be H4
0 ;

the factor of H3+n

0 in Eq. (A7) should be 2n−1H4
0 ; the factor of 1.1(n − 1) in Eq. (A8) is more precisely

1.3(n − 1); the factor of 1.2nT in Eq. (A14) is more precisely 1.4nT .
2The point about which the potential is expanded is in principle arbitrary. However, the spectral indices

n and nT can only plausibly be measured on scales from 1 Mpc − 104 Mpc and S and T depend upon
perturbations on these same scales, so it makes sense to choose the expansion point to correspond to when
these scales crossed outside the horizon during inflation; in addition, by taking k50τ0 = 1 several expressions
simplify. The precise number of e-folds before the end of inflation when these scales crossed outside the
horizon depends logarithmically upon the energy scale of inflation and the reheat temperature, see Refs. [4,
5, 6]; for the sake of definiteness we take this number to be 50, which can easily be changed to the correct
value for a given inflationary model.
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1.22×1019 GeV is the Planck mass, H0 is the present value of the Hubble constant, τ0 ≃ 2H−1
0

is the present conformal age of the Universe, and γ ≃ 0.577 is Euler’s constant. Scale-
invariant metric perturbations correspond to (n − 1) = nT = 0. The functions T (k) and
TT (k) are the transfer functions for scalar [7] and tensor [8] metric perturbations respectively;
for kτ0 ≪ 100, both T (k) and TT (k) → 1. The expressions for n and nT are given to
lowest order in the deviation from scale invariance (hereafter, referred to as first order), and
the expressions for A and AT include the lowest-order term as well as the next correction
(hereafter, referred to second order) [9].

From these expressions the consequences of the scalar and tensor metric fluctuations may
be computed. In particular, the contributions to the variance of the angular power spectrum
of the CBR anisotropy on large angular scales (l ≪ 200) which arise predominantly due to
the Sachs-Wolfe effect are given by [8]

〈|aS
lm|2〉 =

H4
0

2π

∫

∞

0
k−2P (k)|jl(kτ0)|2dk, (5)

〈|aT
lm|2〉 = 36π2Γ(l + 3)

Γ(l − 1)
AT

∫

∞

0
knT +1|Fl(k)|2|TT (k)|2dk, (6)

Fl(k) = −
∫ τ0

τLSS

j2(kτ0)

kτ0

(

jl(kτ0 − kτ)

(kτ0 − kτ)2

)

dτ, (7)

where τLSS ≃ τ0/(1 + zLSS)
1/2 ≈ τ0/35 is the conformal age at last scattering (zLSS ≃ 1100)

and jl is the spherical Bessel function of order l. (We note in passing that both expressions
are based upon the approximation that the Universe is matter-dominated at last-scattering;
the small contribution of radiation, about 10%-20%, leads to corrections [8] that would have
to be included in a more accurate treatment. The corrections to the quadrupole anisotropy
are small.)

The contribution of scalar and tensor metric perturbations to the observer averaged
variance of the quadrupole CBR anisotropy can be computed numerically [5]

S ≡ 5〈|aS
2m|2〉

4π
≃ 2.2 [1 + 1.2nT + 0.08(n − 1)]

V50(k50τ0)
1−n

m4
Plx

2
50

, (8)

T ≡ 5〈|aT
2m|2〉

4π
≃ 0.61 [1 + 1.4nT ]

V50(k50τ0)
−nT

m4
Pl

, (9)

where the dependence upon (n − 1) and nT is given to first-order. In evaluating these
expressions the effect of transfer functions is negligible as the integrals are dominated by
kτ0 ∼ 2. For simplicity, following footnote 2 we henceforth omit factors of (k50τ0)

1−n and
(k50τ0)

−nT ; they are easily re-inserted if needed.
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1.1 First-order reconstruction

We choose S, T , nT , and (n−1) as a convenient set of observables; other choices are possible
and can be easily transformed to our set.3 Since S, T , n, and nT are expressed in terms of the
potential and its first two derivatives, one can invert the expressions to solve for the potential
and its first two derivatives in terms of S, T , n, and nT plus a “consistency relation.” Those
expressions are [12]

V50/m
4
Pl = 1.65(1 − 1.4nT )T,

= 1.65
(

1 + 0.20
T

S

)

T, (10)

V ′

50/m
3
Pl = ±8.3

√
−nT T,

= ±8.3

√

1

7

T

S
T, (11)

V ′′

50/m
2
Pl = 21[(n − 1) − 3nT ]T,

= 21
[

(n − 1) + 0.43
T

S

]

T, (12)

nT = −1

7

T

S
. (13)

In the second expressions for the potential and its first two derivatives we have used the
consistency relation to express nT in terms of T

S
, as T

S
should be easier to measure [10].

Note that the sign of V ′ cannot be determined as it can be changed by a field redefinition
φ → −φ, though a specific choice here determines the signs of various later expressions. This
procedure actually generates the full second-order term for V50, while the other expressions
are first-order.

In order to actually reconstruct the inflationary potential over the eight or so e-folds
relevant for astrophysics from its value and first two derivatives one needs to relate the
number of e-foldings from the end of inflation, N (where dN/dt = −H), to the value of the
scalar field. To lowest order the equation for dφ/dN follows from the slow-roll equation for
the evolution of φ and is given by

dφ

dN
≃ m2

Pl

8π

V ′

V
, (14)

where to lowest order the right-hand side is just
√−nT mPl/

√
8π.

In the next section we discuss the overall strategy of perturbative reconstruction, and in
the following section go on to derive the second-order expressions for the potential and its
first two derivatives, for the equation relating φ and N , and for the consistency relation, as
well as the first-order expression for the third derivative. We finish with a brief discussion
of our results.

3For example, in separating the tensor and scalar contributions to CBR anisotropy one might measure
l(l+1)〈|alm|2〉 for four values of l (or ranges centered on four different values of l); see e.g., Refs. [10, 11]. From
these measurements and the known dependence of l(l +1)〈|aS

lm
|2〉/4π ≈ S(l/2)n−1 and l(l +1)〈|aT

lm
|2〉/4π ≈

T (l/2)nT upon S, (n − 1), T , and nT , cf. Eqs. (5) and (6), our chosen observables can be extracted.
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2 Perturbative Reconstruction Strategy

While one can hope to learn about the potential over the interval that affects astrophysical
scales, it is probably not realistic to hope to learn much about the potential globally without
some additional a priori knowledge (e.g., the functional form of the potential).4 The funda-
mental goal of perturbative reconstruction is to use a finite set of data to reconstruct the
inflationary potential over the interval where the eight or so e-foldings of inflation relevant
to astrophysics took place. The observational data all trace to the scalar and tensor metric
perturbations, whose observable consequences can be expressed in terms of the inflationary
potential V and its derivatives V (m) evaluated at some convenient point in this interval. (For
brevity, in this section we drop the subscript ‘50’ that indicates where the potential and its
derivatives are to be evaluated.) Once the observables, e.g., nT , (n − 1), S, T and so on,
have been expressed in terms of the potential and its derivatives, these expressions can be
inverted to express the potential and its derivatives in terms of the observables, as well as a
consistency relation. From these the potential can be recovered by expansion.

In principle, the observables depend upon all the derivatives of the potential, making the
problem appear intractable. If one is willing to restrict the problem to flat potentials which
lead to nearly scale-invariant perturbations and nearly exponential inflation, the problem can
be made manageable. (In the scale-invariant limit the potential is precisely constant and
all its derivatives vanish.) In the nearly scale-invariant limit we have a set, albeit infinite,
of small parameters to expand in: mm

PlV
(m)/V ; as we shall describe, when calculating to a

given accuracy only a small number of derivatives are needed. Put another way, the terms
involving more derivatives or higher derivatives are of higher order. To be more specific, to
lowest order

T ∼ O(V/m4
Pl), (15)

nT , T/S ∼ O[(mPlV
′/V )2], (16)

(n − 1) ∼ O[(mPlV
′/V )2] + O[m2

PlV
′′/V ]; (17)

that is, only the potential and its first two derivatives come into play.
Corrections from higher derivatives come into play because of the variation of the poten-

tial and its first two derivatives during the Hubble time or so that a given scale is crossing
outside the horizon and is becoming a classical metric perturbation. It is straightforward
to write down the form of the higher derivative terms expected by using the fact that the
variation of a given derivative over a Hubble due to a higher derivative is:

δV (n) ∼ V (m)δφm−n ∼ (m2
PlV

′/V )m−nV (m), (18)

where the final expression follows by using dφ/dN ∼ m2
PlV

′/V . The form of the higher-order

4The one possible exception involves the accurate measurement of the stochastic background of gravita-
tional waves on scales from 1 km to 3000 Mpc (corresponding to N ≃ 0 − 50) in which case the inflationary
potential could be mapped out directly since the amplitude of the tensor perturbation on a given scale is
related to the value of the potential.
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terms in the expansions of T , nT , T/S, and n can now be written down directly:

T ∼ O(V/m4
Pl)
[

1 + O[(mPlV
′/V )2] + O[(m2

PlV
′′/V )(mPlV

′/V )2] + · · ·
]

, (19)

nT , T/S ∼ O[(mPlV
′/V )2] + O[(m2

PlV
′′/V )(mPlV

′/V )2]

+ O[(m3
PlV

(3)/V )(mPlV
′/V )3] + · · · , (20)

n − 1 ∼ O[(mPlV
′/V )2] + O[m2

PlV
′′/V ] + O[(m3

PlV
(3)/V )(mPlV

′/V )]

+ O[(m3
PlV

(3)/V )(m2
PlV

′′/V )(mPlV
′/V )] + O[(m3

PlV
(3)/V )(mPlV

′/V )3] + · · · .(21)

The expansion for V begins with a term that involves no derivatives; the next term
involves two derivatives; the next four derivatives, and so on. The expansions for nT , T/S,
and (n − 1) begin with terms involving two derivatives; followed by terms involving four
derivatives; and so on. In the previous literature, the lowest-order term has been referred
to as first-order; the next term, which involves two additional derivatives, has been referred
to as second-order; and so on. Explicit expressions for the second-order terms are given in
Refs. [9, 13]; some of the third-order terms for (n − 1) are given in Ref. [14].

In the next three subsections we address the convergence of the Taylor series for the
potential and the relative sizes of the terms in the expansions for the observables. We
show that for a very general class of potentials that lend themselves to reconstruction that
the higher-order terms in these expansions are smaller and are bounded by nT /∆Nm/2−1,
where m is the number of derivatives in the term, and further, that the Taylor series for the
potential is absolutely convergent.

Before going on, let us remind the reader of a very useful fact and mention some notation.
The variation in the scalar field over the eight relevant e-folds of inflation will be needed in
many places; it is ∆φ/mPl ∼ (mPlV

′/V )∆N , where ∆N ∼ 8 and throughout we use ∆ to
indicate the change in a quantity over the eight relevant e-folds. Since nT ∼ (mPlV

′/V )2,

we will use n
1/2
T to characterize the size of mPlV

′/V . While it is actually (n − 1) − 3nT and
not (n − 1) whose lowest order term is given by m2

PlV
′′/V , for simplicity we will often use

(n − 1) to characterize the size of m2
PlV

′′/V .

2.1 Scale-free potentials

Let us begin with a very simple class of potentials before we consider the general case. These
are potentials without a scale other than an overall normalization; e.g., V (φ) = V0 exp(−βφ),
V (φ) = aφb, or V (φ) = aφ−b. For such potentials there is but a single expansion parameter
since

mm
PlV

(m)

V
∼ O[(mPlV

′/V )m]. (22)

For the potentials given above, Eq. (22) follows directly; in the absence of a more quantitative
definition of scale-free we shall use Eq. (22) as the definition.

If we use nT ∼ (mPlV
′/V )2 to characterize the deviation from scale-invariance, it follows

that
mm

PlV
(m)

V
∼ O[n

m/2
T ], (23)
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with higher-order corrections to the expression for mm
PlV

(m)/V increasing as powers of nT .
For such potentials n − 1 and nT are necessarily of the same order, which is not true in the
general case. The convergence of the power series for V (φ) over the interval of ∆N ∼ 8
e-folds is manifest, as the contribution of the m-th derivative to the Taylor expansion is

∆Vm

V
∼ 1

m!

V (m)∆φm

V
∼ (nT ∆N)m

m!
. (24)

For scale-free potentials Eq. (22) provides the ordering of terms in the expansion of the
observables in terms of the derivatives of the potential very directly: the order of a term
involving m derivatives is (mPlV

′/V )m ∼ O(n
m/2
T ). For example, in expression Eq. (21) for

(n−1) the first two terms are of the order of nT ; the next is of the order of n2
T ; and the final

two are of the order of n3
T .

2.2 Strong reconstructability

A priori we do not know the form of the potential and thus whether or not it is scale-free;
therefore, it is important to address the most generic case possible. Lacking a priori knowl-
edge of the potential, one can take advantage of the observational data itself for guidance in
reconstruction. In the near term the observational data available are likely to be a handful
of numbers, e.g., nT , (n − 1), S, and T . A reasonable, robust, and pragmatic criterion for
reconstructability is that the spectral indices do not vary greatly over the eight e-folds of
interest; that is,

|∆nT |
|nT |

< δ,
|∆(n − 1)|
|(n − 1)| < δ, (25)

where δ is some suitably small number. We shall refer to this as “strong reconstructability,”
or SR.

Since the scalar and tensor spectral indices depend upon the first two derivatives of the
inflationary potential, SR can be quantified in the following way: V ′ and V ′′ should not vary
significantly over the interval of inflation affecting astrophysically interesting scales. This
in turn constrains the higher derivatives of the potential through their contributions to the
Taylor expansions of V ′ and V ′′:

∆V ′

V ′
< δ ⇒ V (m)∆φm−1

(m − 1)!V
< δ

V ′

V
for m ≥ 2; (26)

∆V ′′

V ′′
< δ ⇒ V (m)∆φm−2

(m − 2)!V
< δ

V ′′

V
for m ≥ 3. (27)

Again using ∆φ/mPl ∼ (mPlV
′/V )∆N , these bounds become

mm
PlV

(m)

V
<

(

mPlV
′

V

)

−m+2

∆N−m+1δ (m − 1)!

< O[n
−m/2+1
T ∆N−m+1δ(m − 1)!] for m ≥ 2; (28)
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mm
PlV

(m)

V
<

(

mPlV
′

V

)

−m+2 (
m2

PlV
′′

V

)

∆N−m+2δ (m − 2)!

< O[(n − 1)n
−m/2+1
T ∆N−m+2δ(m − 2)!] for m ≥ 3, (29)

where in the final expressions we have used the fact that nT ∼ O[(mPlV
′/V )2] and that

(n − 1) ∼ O[m2
PlV

′′/V ].
These constraints to the derivatives of the potential are weaker than the ones we derived

for scale-free potentials, but are more generally applicable and serve the same purpose. The
second of these implies that the Taylor expansion for the potential is absolutely convergent,
as it bounds the contribution to V (φ) from the m-th derivative

∆Vm

V
∼ V (m)∆φm

m!V
< O

(

nT (n − 1)∆N2δ

m(m − 1)

)

. (30)

Constraints (28) and (29) also serve to order terms in the expansions of the observables
in terms of the potential and its derivatives. For example, Eq. (21) for the scalar index
includes terms of order (mPlV

′/V )2, mPlV
′′/V , (mPlV

′/V )(m3
PlV

(3)/V ). Our SR bounds tell
us nothing about the relative sizes of first and second terms (the first-order terms), though
they imply that the second term must be smaller than δ/∆N . Based on the SR bounds,
the third term (second-order term) must be less than both δ/∆N2 and (m2

PlV
′′/V )δ/∆N ,

and so it is necessarily of higher order than the second term. The higher-derivative terms,
(mPlV

′/V )3(m3
PlV

(3)/V ) and (mPlV
′/V )(m2

PlV
′′/V )(m3

PlV
(3)/V ) terms are of even higher

order: the former must be less than δ/∆N2 times the first term in the expansion for (n− 1)
and less than nT δ/∆N times the second term in the expansion for (n − 1), while the latter
must be less than δ/∆N2 times the second term in the expansion for (n − 1). The ordering
of the terms in the derivative expansion for (n− 1) is clear: more derivatives are suppressed
by powers of ∆N . In particular, a term involving m derivatives can be no larger than
nT δ/∆Nm/2−1.

Before ending this subsection, we mention an interesting possibility: for models with very
large deviations from scale-invariance the data may some day be good enough that a small
fractional change in the spectral index is observable. A case in point is intermediate inflation
[15], where the scalar index may be greater than unity and may decrease significantly. In
particular, the potential for intermediate inflation is scale-free and dn/d ln k ∼ (n − 1)2 so
that ∆(n − 1)/(n − 1) ∼ ∆N(n − 1). The SR bounds still apply, and additionally, the new
observable dn/d ln k allows one to determine V ′′′ at lowest order (as described in section 3).

2.3 Weak reconstructability

The pragmatic criteria of SR discussed above can be relaxed somewhat, without sacrificing
the convergence of the Taylor series for the potential or the ordering of terms in the expan-
sions for the observables. Suppose that one, or even both, of the spectral indices did indeed
exhibit a large fractional change over astrophysically interesting scales, so that a power-
law description of the scale dependence of the metric perturbations is not strictly valid. If

7



the absolute value of the change is much less than unity, then the fact that ∆nT > nT

or ∆(n − 1) > (n − 1) is undetectable and of little practical significance, and, as we shall
show now, reconstruction can proceed. We refer to this as “weak reconstructability,” or
WR. A case in point is the natural inflation model [16]; with parameters chosen to give
(n− 1) = −0.3, the tensor spectral index grows by a factor of about 100 between the largest
and smallest interesting scales. However, this growth is entirely unobservable, being the
difference between nT = −10−9 and nT = −10−7.

Logically, there are three cases of WR: (i) scalar index satisfies SR and tensor index
satisfies WR; (ii) tensor index satisfies SR and scalar index satisfies WR; and (iii) both tensor
and scalar indices satisfy WR. Since we have previously derived the bounds to mm

PlV
(m)/V

that follow if tensor and scalar indices satisfy SR, cf. Eqs. (28) and (29) respectively, here
we simply do the same for WR. In case (i) the SR scalar and WR tensor bounds apply; in
case (ii) the WR scalar and SR tensor bounds apply; and in case (iii) the scalar and tensor
WR bounds apply. In all three cases the implications for convergence of the power series
and the ordering of terms is very similar to the case of SR.

Let us take δ to be the parameter that quantifies the smallness of the tensor (or scalar)
index and its absolute change. For sake of definiteness, we would imagine that a change of
a few hundredths for the scalars, and considerably more for the tensors, would be extremely
hard to observe. Following the same strategy as in the SR case, this time bounding the
absolute change in the spectral index due to higher-order derivatives, we find:

(

mm
PlV

(m)

V

)

< n
−m/2
T ∆N−m+1δ(m − 1)! for m ≥ 2 (tensor), (31)

(

mm
PlV

(m)

V

)

< n
(1−m)/2
T ∆N−m+2δ(m − 2)! for m ≥ 3 (scalar). (32)

These constraints differ from their counterparts in the SR case only slightly: by one fewer
factor of nT (tensor) and by the absence of the (n − 1) factor (scalar). Thus, the conclu-
sions reached for convergence and term ordering in the SR case carry over with only minor
modification. For example, the size of the contribution of the m-th derivative to the Taylor
series of the potential is bounded by (n − 1)nT ∆N2δ/m(m − 1), nT ∆N2δ/m(m − 1), and
nT ∆N2δ/m(m − 1) in cases (i)–(iii) respectively; this guarantees absolute convergence. If
the SR tensor bound applies then a term involving m derivatives is as before bounded by
nT δ/∆Nm/2−1; if the WR tensor bound applies then such a term is bounded by δ/∆Nm/2−1.

Finally, what types of potentials give rise to order unity fractional changes in the spectral
indices while still satisfying the WR criteria? It is simple to show for the tensor index that
∆N(n− 1) must be of order unity or larger; this occurs in the previously mentioned natural
inflation model. For the scalar index the condition is that (m3

PlV
(m)/V )nT ∆N/(n− 1) must

be of order unity or larger.
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2.4 Sensibility summary

When physicists construct an expansion in a small parameter (or even several small param-
eters) they rarely worry about rigorous mathematical issues. While we would like to follow
in that tradition, the problem here is a bit more vexing as there are in principle an infinity
of small expansion parameters: mm

PlV
(m)/V . We have addressed two (not unrelated) issues

here: convergence of the reconstructed potential and ordering of terms.
Based upon pragmatic criteria that derive from the data themselves we have shown that

convergence and term ordering follow for potentials where the spectral indices do not vary
significantly over astrophysically interesting scales (referred to as SR), or if they do vary by
of order unity, the absolute change is small by comparison to what can be measured (referred
to as WR). In both cases we explicitly showed that the Taylor expansion for the potential is
necessarily convergent, and that higher-derivative terms in the expansions for the observables
descend in size. For “scale-free” potentials a term that involves m derivatives is of the order
of n

m/2
T ; in the more generic cases of SR and WR, such a term is bounded by nT δ/∆Nm/2−1

and δ/∆Nm/2−1 respectively. This establishes what has been previously assumed implicitly
in Refs. [9, 13]: the terms involving more derivatives are of higher order.

2.5 The consistency relation

An important feature of reconstruction is that the problem is overdetermined; specifically,
a set of M ≥ 3 observables can be expressed in terms of the potential and its first M − 2
derivatives. This implies a “consistency relation,” which, for increasing M , contains terms
of higher and higher order. The lowest-order consistency equation, nT = −1

7
T
S
, has been

much discussed (e.g., in Ref. [4, 5]) and arises through Eqs. (1), (8) and (9) which express
nT , S, and T in terms of V50 and V ′

50.
Calculating higher derivatives alone, while keeping the calculation of each derivative to

lowest order, does not lead to the correct second-order term in the consistency equation,
and nor does calculating the second-order corrections to the derivatives present. One must
systematically do both. The second-order version of the consistency equation is obtained by
calculating the potential, its derivative and Eq. (1) to a higher order. Adding an extra order
to the calculation of V ′

50 adds a new observable, (n−1), which will appear in the consistency
equation at second order. To account for there being still only a single consistency equation,
there must be a new equation, and because (n − 1) has only entered at second-order in V ′

50,
we only need the first-order equation for V ′′

50. The second-order consistency equation, which
we calculate in this paper, therefore relates nT , T

S
and (n − 1), with the last only appearing

as a second-order correction. Were one to desire a calculation to yet higher order, the same
pattern would persist; each existing derivative must be calculated to one extra order and
the next derivative to lowest order, introducing a new observable. This will generate next-
order terms in the consistency equation with the new observable appearing at that order.
However, this presently cannot be done as third-order expressions for V50 and V ′

50 have not
been calculated.

9



2.6 Expansion techniques

Given the value of the potential and its first two or three derivatives at a point and the
φN relation just obtained, one can reconstruct the potential on the observationally relevant
scales (i.e., N ≃ 42 − 50). The standard technique used previously is the Taylor expansion

V (φ) = V50 + V ′

50(φ − φ50) +
1

2
V ′′

50(φ − φ50)
2 + · · · (33)

For many situations this is perfectly fine (e.g., when nT and n − 1 are small, see Ref. [12]).
However, if the range of eight or so e-foldings corresponds to a large range in φ the conver-
gence may not be very good because of the abrupt truncation of the Taylor series. Specifically,
for large (φ − φ50) the shape of the reconstructed potential is dictated, rightly or wrongly,
by the last term in the expansion (quadratic or cubic).

An alternative is the Padé approximant [17], which can be generated directly from a
truncated power series. For a power series that extends to order N , the Padé approximants
are quotients of two polynomials of order L (numerator) and M (denominator) denoted by
[L, M ], where L + M = N . By construction, the expansion of [L, M ] matches that of the
power series to order N , but of course is not truncated. Very often, Padé approximants
provide a very good approximation over a wider range of values than the Taylor series from
which they are derived; they in some way encode better estimates of the higher-order terms
than does truncation. If we truncate the Taylor series at the second derivative, then the
associated diagonal Padé approximant [1, 1] is a ratio of two first-order polynomials given
by5

R(φ) =
a0 + a1(φ − φ50)

1 + b1(φ − φ50)
, (34)

with
a0 = V50; b1 = −V ′′

50/2V ′

50; a1 = V ′

50 − V50V
′′

50/2V ′

50. (35)

As we shall illustrate later by specific example, Padé approximants have a lot to offer when
the Taylor series proves a poor approximation.

3 Second-order Reconstruction Reduced to Practice

Having discussed the philosophy and strategy, let us proceed to deriving the full reconstruc-
tion equations at second-order. The reconstruction equations for the scalar potential and its
first two derivatives, evaluated to second-order, are given in Ref. [13], though not in terms
of cosmological observables. They are given in terms of the perturbation amplitudes A2

G

and A2
S. Very roughly, AS is the horizon-crossing amplitude of the density perturbation on

a given scale and AG is the horizon-crossing amplitude of the tensor perturbation (in the

5The [2, 0] approximant is just the truncated Taylor series; in addition to simplicity, there is some motiva-
tion for using the diagonal approximant rather than the [0, 2] approximant as it is asymptotically constant,
consistent with the flatness of inflationary potentials.
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Appendix we provide some relations between notation used in that paper and this one.) Our
purpose here is to express these second-order expressions for the potential and its first two
derivatives in terms of the measurable quantities n, dn/d ln k, nT , S, and T .

The amplitudes A2
S and A2

G are related to the observables S, T , nT and n by:

A2
G = 0.70(1 − 1.3nT )T, A2

S = 9.6[1 − 1.15(n − 1)]S, (36)

where the (n − 1) and nT dependencies have been found by evaluating the Sachs-Wolfe
integrals numerically. Both expressions are accurate to second-order.

Before deriving second-order expressions for the potential and its derivatives, we calculate
the second-order version of the consistency relation. It is obtained from Eq. (2.9) of Ref. [13],

− nT

2
=

A2
G

A2
S

[1 + 3ǫ − 2η] , (37)

where to the required order the slow-roll parameters ǫ and η (defined in the Appendix) are
given by

ǫ = −nT /2, η = (n − 1)/2 − nT . (38)

This gives a simple and very useful relation for A2
G/A2

S,

A2
G

A2
S

= −0.5nT [1 − 0.5nT + 1.0(n − 1)] . (39)

Substituting into Eq. (36), we find the second-order consistency relation

nT = −1

7

T

S
[1 − 0.8nT + 0.15(n − 1)] , (40)

or
T

S
= −7nT [1 + 0.8nT − 0.15(n − 1)] . (41)

To the required order we can use the first-order truncation nT = −1
7

T
S

inside the brackets,
thereby obtaining an alternative form,

nT = −1

7

T

S

[

1 + 0.11
T

S
+ 0.15(n − 1)

]

, (42)

where nT is given in terms of the more accessible quantities (n − 1) and T
S
.

Independent measurements of n, nT and T
S

provide a powerful test of the inflationary
hypothesis; in the space of these parameters inflationary models must lie on the surface
defined by Eq. (41). In Figure 1 we illustrate the inflationary surface both without and
with second-order corrections. The second-order corrections break the degeneracy in the
(n − 1) direction, as well as typically reducing T

S
viewed as a function of nT and (n − 1).

However, the portions of the surface that feature large corrections are not favored by present
cosmological data, and further, are susceptible to higher-order corrections. (Indeed, well
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away from scale-invariance the surface would be noticeably different even just using Eq. (42)
instead of Eq. (41), which differ by third and higher order terms.)

Obtaining the reconstruction equations is simply a matter of substituting into Eqs. (3.4),
(3.6) and (3.15) of Ref. [13] for V , V ′ and V ′′ respectively. We give two alternative forms
for each, the first using nT and the second substituting T

S
for nT using the second-order

consistency equation. They are

V50/m
4
Pl = 1.65(1 − 1.4nT )T,

= 1.65
(

1 + 0.20
T

S

)

T, (43)

V ′

50/m
3
Pl = ±8.3

√
−nT [1 − 1.1nT − 0.03(n − 1)]T,

= ±8.3

√

1

7

T

S

[

1 + 0.21
T

S
− 0.04(n − 1)

]

T, (44)

V ′′

50/m
2
Pl = 21

[

(n − 1) − 3nT + 1.4n2
T

+0.6nT (n − 1) − 0.2(n − 1)2 + 1.1
dn

d ln k

]

T,

= 21

[

(n − 1) + 0.43
T

S
+ 0.073

(

T

S

)2

−0.015
T

S
(n − 1) − 0.2(n − 1)2 + 1.1

dn

d ln k

]

T. (45)

These expressions are accurate to second-order. Naturally, they agree with the first-order
expressions given earlier.

Though no expression is given in Ref. [13] for V ′′′, by using the lowest-order expressions
for ǫ, η, and a third slow-roll parameter ξ, and Eq. (3.13) which relates the three to dn/d ln k,
one can obtain the first-order expression,

V ′′′

50/mPl = ±104
√
−nT

[

dn/d ln k

nT
− 6nT + 4(n − 1)

]

T,

= ±104

√

1

7

T

S

[

−7
dn/d ln k

T/S
+ 0.9

T

S
+ 4(n − 1)

]

T. (46)

where the overall sign is to be the same as that of V ′. The second-order term would require
yet another observable. As remarked in Ref. [13], even this first-order expression features
the rate of change of the scalar spectral index, which is likely to be very difficult to measure.
Realistically then, in the near term only the value of the potential and its first two derivatives
are likely to be accessible to accurate determination.

The final step in reconstructing the potential is to use dφ/dN to the desired order, to
find the range of φ that corresponds to the eight or so e-foldings of inflation relevant for
astrophysics. To proceed, we may simply carry out a Taylor expansion of φ about φ50, to
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whatever order we believe is appropriate,

φN − φ50 = (N − 50)
dφ

dN

∣

∣

∣

∣

∣

φ50

+
1

2
(N − 50)2 d2φ

dN2

∣

∣

∣

∣

∣

φ50

+ · · · (47)

This is a double expansion, in the sense that the coefficients are themselves obtained as a
series expansion in the slow-roll parameters.

To proceed, we use as a starting point the exact formula

φ̇ = −m2
Pl

4π
H ′ , (48)

which, along with dN/dt = −H , yields the relation from which the Taylor coefficients may
be calculated,

dφ

dN
=

m2
Pl

4π

H ′

H
. (49)

To get a given coefficient in the Taylor expansion for φN , one simply calculates diφ/dN i

expanding to the desired order in the deviation from scale invariance.6 For example, taking
only the first term in the φN expansion and working to first-order yields the expression
already given in Section 1.1. We give the first coefficient in the φN expansion to second-
order and the second coefficient in the φN expansion to first-order only,

φN − φ50 = ± mPl√
8π

√
−nT [1 + 0.1nT + 0.1(n − 1)] (N − 50)

± mPl

4
√

8π

√
−nT [(n − 1) − nT ] (N − 50)2 + · · · , (50)

with both signs again agreeing with that of V ′.
In the process of reconstruction, we shall use the first-order expansion for φN − φ50 in

first-order reconstruction, and the second-order expansion in second-order reconstruction.

4 Reconstructing an exponential potential

A useful testing ground for reconstruction is the exponential potential, the only known case
where the perturbation spectra can be derived exactly analytically [9, 18]. For the potential

V (φ) = V0 exp

(

−
√

16π

p

φ

mP l

)

, (51)

6Note this procedure differs slightly from that in Ref. [12], where dφ/dN was expanded linearly about
φ50 and φN was solved for exactly, cf. Eq. (8). This results in an exponential, whose expansion picks up
the (N − 50) and (N − 50)2 terms correctly to lowest order in the deviation from scale invariance, though
not the higher-order terms in the (N − 50) term which would require higher-order terms in the expansion of
dφ/dN . There is an overall sign error in Eq. (8) of Ref. [12].
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the scale factor grows exactly as tp. Compared with the lowest order expressions, the ampli-
tudes A and AT , or A2

S and A2
G, are both multiplied by the same p-dependent factor R2(p),

where

R(p) = 21/(p−1) Γ [3/2 + 1/(p − 1)]

Γ[3/2]
(1 − 1/p)p/(p−1) , (52)

where Γ(· · ·) is the usual gamma function. Both scalar and tensor spectra are exact power
laws with spectral indices (n−1) = nT = −2/(p−1). The scalar-field solution is characterized
by

φ̇ =

√

p

4π

mPl

t
;

dφ

dN
= − mPl√

4πp
; V (φN) = V true

50 exp [2(N − 50)/p] . (53)

The expressions for T and S can be obtained exactly by integrating Eqs. (5) and (6),

S = 2.2f(n)R2(p)
V true

50

m4
Plx

2
50

, (54)

T = 0.61g(nT )R2(p)
V true

50

m4
Pl

, (55)

where the numerical factors f(n) = 1 + 1.15(n − 1) + · · · and g(nT ) = 1 + 1.3nT + · · · arise
from the n, nT dependence of the Sachs-Wolfe integrals, cf. Eqs. (5, 6).

We are now ready to carry out an array of reconstruction methods. Because we are
using exact expressions to generate the spectra, this procedure is more ambitious, and more
realistic, than those attempted thus far [6, 12], where the trial spectra were produced using
the slow-roll approximation. For the general inflationary potential, exact results are not
known, and so this procedure is not possible7. However, our method here should give a more
realistic estimate of inherent errors even in the general case.

There are two distinct types of error. The first is error in the value of the potential at
φ50, due to third-order and higher terms. By substituting the expression for T in Eq. (55)
into Eq. (10) or (43) for V50 we can compute that error:

V50/V
true
50 = g(nT )(1 − 1.4nT )R(p)2. (56)

The second error involves the shape of the potential, which depends on the ability of the
chosen expansion to match the potential over the eight interesting e-foldings.

We have chosen as a specific example an exponential potential with p = 43/3. We did
so because this leads to about the largest departure from scale invariance that can still be
regarded as observationally viable, (n − 1) = nT = −0.15 and T

S
≃ 1, and thus realistically

represents the most challenging example of reconstruction. The exact potential is shown in
Fig. 2 along with the results of five different reconstructions.

To begin, consider the error in estimating V true
50 ; we have g(nT = −0.15) = 0.824 and so

V50/V
true
50 ≃ 0.95, a modest 5% error due to the neglected higher-order terms. As we always

7Of course, we are going to pretend that we don’t know the potential is exponential to demonstrate our
methods.

14



include the second-order term in V50, the error is the same in every method we look at. Had
the first-order expression for V50 been used instead, corresponding to the neglect of the factor
of (1 − 1.4nT ) in Eq. (10), then the underestimation would have been about 20%.

Let us now consider the shape, which we note depends on T and S only through their
ratio. The important distinction between different methods is the difference in required
input data; methods needing only n and T

S
have the advantage of depending only on the

information that is easiest to obtain. Requiring dn/d ln k in addition, while offering more
accuracy, is setting a much trickier observational task, though upper bounds are also useful
in the absence of actual determinations.

As a starting point, let us take the equations derived in Ref. [12], which are primarily
first-order though they include the second-order correction to V50, cf. Eqs. (10–12). In this
extreme example, the quadratic Taylor series based upon this does a bad job of approximating
the shape of the potential, as it turns upward for large (φ − φ50) due to the truncation at
the (φ − φ50)

2 term (see Fig. 2).
If we now require knowledge of dn/d ln k, the Taylor series approach can be improved in

two ways. We can now take V50, V ′

50, and V ′′

50 to second-order; however, the improvement
is rather minimal. Alternatively, we can stick to first-order expressions, but include the V ′′′

50

cubic term. Again the improvement is modest, though at least the unwanted minimum has
been eliminated. One could go further and take V50, V ′

50, and V ′′

50 to second-order and V ′′′

50 to
lowest order, which we haven’t illustrated, again seeing only modest gains for the increased
observational requirement.

The Taylor series having been unimpressive, let us progress in a different direction. With
only n and T

S
, as an alternative to the Taylor series one can construct the Padé approximant

based upon it, taking V50 to second-order and V ′

50 and V ′′

50 to first-order. This represents
a substantial gain on the Taylor series to that order without requiring any additional input
information. With this minimal information, it is a much better method. Reintroducing
dn/d ln k allows this method to be extended to second-order, where the reproduction of the
shape of the potential is excellent. To include the third derivative term would necessitate a
more complicated (non-diagonal) Padé approximant, which doesn’t seem warranted at the
moment.

What is the upshot of this comparison? Recalling that we have chosen an example with
extreme deviation from scale-invariance, the second-order corrections are reassuringly small
and only improve the shape of the reconstructed potential slightly. The addition of the
third derivative term in the Taylor series gives a slightly more significant improvement, but
at the price of its dependence upon dn/d ln k even at lowest order. The most remarkable
improvement involves the use of Padé approximants. Even without knowledge of dn/d ln k
the shape of the potential is reproduced far better than with the higher-order Taylor series
which does require that knowledge. As noted previously, the improvement results from the
fact that the Padé approximant is not truncated; further, even in situations where truncation
of the Taylor series does not lead to problems, the Padé approximant still proves valuable
as its Taylor expansion coincides with that of the original expansion. We therefore conclude
that Padé approximants provide a significant improvement in the perturbative reconstruction
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of the inflationary potential.

5 Discussion

By presenting the second-order reconstruction equations directly in terms of observables, we
have been able to assemble and to compare an array of different perturbative reconstruction
techniques based upon cosmological observables. Our work extends previous work in several
important ways.

First, we have placed the perturbative reconstruction process on a firmer foundation by
addressing the important issues of convergence and term ordering. We have emphasized
that the observational data themselves can be used to decide whether or not perturbative
reconstruction is well justified and sensible. In particular, we have shown that the Taylor
series for the potential is absolutely convergent and that terms in the expansions for the
observables must decrease in size as the number of derivatives increase for the case where
the spectral indices do not vary significantly over the astrophysically interesting scales, or,
if they do, their absolute change is small.

Perhaps our most interesting result is the introduction of the Padé approximant as an
alternative to the Taylor series in perturbative reconstruction. It can be obtained from a
Taylor series regardless of the order (in the deviation from scale invariance) to which the co-
efficients of the Taylor series has been obtained. In our worked example, the improvement in
reproducing the shape of the potential as compared to the Taylor series is striking, especially
considering that no extra observables are required.

We have shown that the second-order corrections to the Taylor series coefficients are
generally small, and that those for V50 and V ′

50 only depend upon the same quantities as
the first-order expressions (S, T , and n). The corrections to V ′′

50 however require a new
observable such as dn/d lnk, and by deriving for the first time an explicit expression we have
confirmed that even the lowest-order term in V ′′′

50 requires this challenging observable.
Finally, one of the most important aspects of reconstruction is that it is overdetermined:

Any set of cosmological observables supplies degenerate information regarding the potential
and its derivatives, thereby providing an important consistency check. In particular, the
tensor spectral index can be expressed to second-order in terms of S, T , and n by the
relation: nT = −1

7
T
S
[1 + 0.11T

S
+ 0.15(n − 1)]. In cases that are observationally viable, the

second-order corrections are small.
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Appendix: Some Relations between Notation

For the convenience of the reader, we summarize here some relations between the notation
used here and that in Ref. [13], from which several important results were taken. In that
paper, the spectra AS and AG were defined so as to include any scale-dependence within
them, i.e., they are functions of k. In circumstances where the spectra can be approximated
by power-laws, these are related to the amplitudes A and AT in this paper, which are just
numbers, by

A(k/k50)
n−1 =

2π2

H4
0

A2
S(k), (57)

AT (k/k50)
nT = 2A2

G(k). (58)

Even in cases where the spectra cannot be described by power-laws, the correspondence
holds at k = k50.

In Ref. [13], slow-roll parameters ǫ and η are introduced,

ǫ =
m2

P l

4π

(

H ′

H

)2

, η =
m2

P l

4π

H ′′

H
, (59)

which are again in general k-dependent. As indicated in Section 2 of the present paper, they
can be related to the spectral indices to various orders, ǫ and η being of the same order in
perturbation theory as (n − 1) and nT . To lowest-order they are constant, corresponding
to power-law spectra. At lowest-order ǫ = 16πx2, but higher order corrections break this
relation.
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Figure Captions

Figure 1: The consistency plane for inflation in n−nT − T
S

space, the flat surface being the
lowest-order result and the curved one incorporating the second-order corrections, given by
Eq. (41).

Figure 2: An array of different reconstructions of an exponential potential with (n − 1) =
nT = −0.15 (p = 43/3). The longer dotted line indicates the exact potential. The three

18



different line styles correspond to three different reconstruction strategies; solid is Taylor
series truncated at (φ − φ50)

2, dashed is Taylor series truncated at (φ − φ50)
3 and dash-

dotted is the Padé approximant based on the former of these. The upper line of a given
style uses coefficients to first-order in the deviation from scale invariance (save V50, which is
always second-order), while the lower, where plotted, is second-order in all coefficients. The
length of the curves corresponds to eight e-foldings.
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